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Anisotropy in the flow processes of a thin plastic layer�
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Abstract

The theory of the flow of a thin layer of plastic material over surfaces developed by Il’yushin is extended to the case of an
anisotropic ideally plastic material and anisotropic flow on the surface. Particular attention is given to determining the contact
pressure. Two methods are proposed for solving this problem: a variational method and reduction to a Cauchy problem. The effect
of anisotropy is revealed using specific examples.
© 2006 Elsevier Ltd. All rights reserved.

A theory of the flow of thin layers of plastic material over surfaces was proposed by Il’yushin.1,2 This theory was
subsequently developed further and has found numerous applications. All of these investigations refer to the case of an
isotropic material and isotropic friction on the contact surfaces. Meanwhile, in current pressure treatment technology,
there is considerable interest in processes which take account of the anisotropy of both the material as well as the
contact friction.3–6 In this paper, Il’yushin’s theory is extended to both cases of anisotropy. It is shown that in both
cases the pressure in a layer is determined by mathematically identical equations, but, on the other hand, the velocity
fields are basically different. In the case of an anisotropic material, we assume that the degree of deformation of the
layer is small, so that the type and the magnitude of the anisotropy can be assumed to be unchanged. This constraint
is not imposed in the case of anisotropic friction.

1. The compression of a strip by rigid parallel plates

The analysis of the cycloidal Prandtl solution7 served as the basis for formulating the hypotheses of the theory in
Refs. 1,2. We will now extend this solution to the case of a material, the properties of which are described (in the
principal axes of anisotropy) by the quadratic Mises-Hill form8

(1.1)

The coefficients of the form are connected by known relations with the yield points for stretching and shear along the
principal directions.

Consider a layer which occupies the domain
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The rigid planes x = ±h move with a velocity ∓v0 respectively. Under conditions of plane deformation

and the stresses �x, �y, �xy are found from the two equilibrium equations and the plasticity condition (1.1), which takes
the form

(1.2)

where �s is the shear yield point in the direction of the x-axis.
If it is assumed that, subject to the condition (h/l) � 1, the difference �x − �y and the stress �xy are independent of

x, then, following the well-known procedure in Ref. 8, we obtain

(1.3)

As a consequence of symmetry, this solution is written for the first quadrant, and the boundary condition on the edge
x = l is satisfied integrally.

The velocity field is found from the incompressibility condition and the law of plastic flow

Assuming v = v(y) and taking account of relations (1.3), we hence obtain

(1.4)

The solution (1.3), (1.4) possesses all the properties of the Prandtl solutions, and its analysis leads to the same well-
known conclusions.1 All this provides a basis for adopting the hypotheses in Ref. 1,2 when formulating the problem
of the flow of a thin plane layer over rigid surfaces.

2. Formulation of the problem for the case of an anisotropic material

Consider a thin layer of plastic material with the properties (1.1). It occupies a domain S0 in the x, y plane bounded
by a piecewise-smooth contour �. The layer is bounded by the surfaces z = f1(x, y, t) and z = f2(x, y, t) such that the
difference h(x, y, t) = f2 − f1 defines the thin layer as a known function of the coordinates and time. It is important that
h is small and a smoothly changing function of the coordinates and time. We will consider quasistatic processes and
we shall therefore henceforth omit the time as an argument.

The vector of the velocity of relative slippage of the material and the surfaces f2 and f1 is denoted by v (we assume
that there are no so-called internal motions1 of the surfaces); v = |v| · n◦, n◦ = {cos �, sin �}. We will assume that the
friction conditions on the two surfaces are the same and we will denote the magnitude of the friction force by �m. In
extending Prandtl’s hypothesis and the results in Refs. 1,2, we will assume that the friction force �m is equal to the yield
point of the material in the direction n◦. If the coordinate axes coincide with the principal directions of anisotropy, it
follows from relations (1.1) that

(2.1)
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Here, S = (2M)−1/2 and R = (2L)−1/2 are the shear yield points in the x and y directions respectively. To be specific, we
shall assume that S > R, in which case

Putting S = �s, from relation (2.1) we obtain

(2.2)

We will denote the pressure from the side of the layer on the surface by p = −�z; the stresses �x and �y differ by an
amount of the order of max h/l, where l is the characteristic dimension of S0. From condition (1.1), we therefore obtain

(2.3)

The contact friction stresses are directed opposite to the direction of n◦, and the equilibrium equations

(2.4)

follow from this.
Apart from terms of the order of max (h/l), the boundary conditions on the contour � have the form �x = �y = 0,

and, from relations (2.3), we therefore obtain

(2.5)

We now refer the coordinates to l, while retaining the previous notation for them, and assume that

It follows from relations (2.4) and (2.5) that

(2.6)

(2.7)

Since cos � = u/|v| and sin � = v/|v|, it is necessary to supplement system (2.6), (2.7) with an incompressibility
equation which, in dimensionless variables, takes the form

(2.8)

Here v0 is the velocity of approach of the surfaces.
System (2.6), (2.7), (2.8) is separated. In fact, we obtain from (2.6) that

(2.9)

If, subject to condition (2.7), a function z(x, y) is found from this, then, for u and v, we have a system of Eq. (2.8) and
the relation

(2.10)

We shall pay particular attention to problem (2.9), (2.7).
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3. The general solution and some examples

We now make the replacement of variables y = �� in Eq. (2.9) and obtain

(3.1)

If y = �(x) is an explicit equation of the contour �, we shall have � ⇒ �′: � = �(x)/� in the new variables. Suppose z(x,
�) = c = const is the family of level lines. Then, at least in the neighbourhood of the contour and in the domain where
it is smooth, a family � of orthogonal trajectories can be constructed. We will denote one of the lines of this family
which passes through the point x0, �0 of the contour by � = f0(x, x0, �0). As the parameter for �, we will choose the
length of an arc and measure it from the contour. It follows from equation (3.1) that dz/ds = 1/�(x, �), whence

(3.2)

Hence, if the family � is known, the pressure is found by simple quadrature.
We will now show that the lines � coincide with the extremals of the variational problem for the functional (3.2).

The proof is based on the replacement of the Euler-Lagrange equation

(3.3)

by a system of canonical equations using the Legendre transformation F ′
�′ = q:

(3.4)

Eqs. (3.4) are the characteristic system for the equation

(3.5)

In the case being considered

whence

Substituting the resulting expression for L, replacing q by ∂z/∂�, into relation (3.5), we obtain Eq. (3.1). The transver-
sality condition for the functional (3.2) implies orthogonality. The proof is thereby completed.

Eq. (3.3) is a second order differential equation

(3.6)

the solution of which depends on two parameters: � = f(x, a, b). The following four conditions enable us to find these
parameters and the point x0, �0, if a point x, �, through which the trajectory of the family � passes, is specified,

Example 1. When � = 1, we have a problem on the compression of a layer by parallel plates. From Eq. (3.6), we find
the family � as a two-parameter family of lines which are orthogonal to the contour (similar to a sandy embankment,
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A. A. Il’yushin, 1954). The analytical solution of the problem can be easily written out. If x0 = x0(t) and �0 = �0(t) are
the parametric equations of the contour, the equation of the normal to it has the form

(3.7)

The pressure is determined as the distance along the normal (3.7) from the contour to the current point x, �:

(3.8)

In order to obtain z as an explicit function of x and �, from the equality (3.7) it is necessary to express t as a function
of x and � and substitute this into expression (3.8).

The first elementary solution is obtained for the circular domain

From equality (3.7) we find tg t = �/x and from expression (3.8) we find z = 1 −
√

x2 + �2. In the initial formulation,
this is the flow in the elliptic domain x2

0 + y2
0/�2 = 1; for the pressure we obtain z = 1 −

√
x2 + y2/�2, and the

pressure diagram is an elliptic cone (1 − z)2 = x2 + y2/�2.
The level lines are the ellipses

As can be seen from Eq. (2.6) the streamlines are orthogonal trajectories with respect to the level lines. In the example
considered, the calculations lead to the result that the parabolae y = y0(x/x0)1/�2

are streamlines passing through the
point x0, y0 of the contour.

We present a second simple solution for a rectangular domain |x| ≤ a, |y| ≤ b solely to show that this is a unique
case when the level lines and the streamlines are a grid of straight lines parallel to the coordinate axes, and the solution
of the initial problem is given within the framework of the sand analogy.

Example 2. Eqs. (2.9) and (2.7) constitute the Cauchy problem: it is required to find an integral surface z(x, y) which
passes through the contour � in the x, y plane. We put g = 1 and construct a solution based on the fact that the total
integral of (2.9) is known

(3.9)

We will specify the Cauchy conditions in parametric form: z = 0, x = �(t), y = �(t) and, on substituting these into equality
(3.9), we obtain

The additional equation for determining the parameters a and b is found from the relation

Finally, equality (3.9) takes the form

(3.10)

The parameter t as a function of x and y is eliminated from the equation z′
t = 0.

We now consider flow in the circle � = cos t, � = sin t. It follows from relation (3.10) that

(3.11)

The condition z′
t = 0 leads to the equation

(3.12)
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which reduces to a complete fourth order algebraic equation in sin t, which is not suitable for an analytical investigation.
Eq. (3.12) has a unique solution in the sector x2 + y2 ≤ 1, 0 ≤ t ≤ 	/2, and there is no difficulty in finding this solution
using numerical methods.

If the degree of anisotropy is small such that 
2 � 1, the solution of Eq. (3.12) can be found by expansion with
respect to a small parameter and, in the first approximation, we obtain

After substitution in to expression (3.11), we will have

Some other examples of the solution of Eq. (3.1) can be found in Ref. 9. Analogies between this problem and various
problems in geometry and physics are also pointed out in Ref. 9.

4. Anisotropic friction

The assumption that the contact friction stress is in the opposite direction to the relative velocity of slippage vector,
traditionally used in mathematical models of processes involving treatment with pressure. At the same time, for the
purpose of controlling a process, the contacting surfaces can be finished with a particular texture or thin lubricating
layers with anisotropic properties can be applied. In both cases, we can take6

for the shear stress vector �m.
In the case being considered, the surfaces f1 and f2 are characterized by the matrices

Without loss of generality, the matrices A1 and A2 can be assumed to be diagonal matrices: �′
ik = �ik
ik, �′

ik = �ik
ik

and the principal directions of anisotropy can be assumed to be identical on the two surfaces. Then, in agreement with
well-known results,2 the equilibrium equations of the layer take the form (subject to the condition |�m| = �s)

(4.1)

We put �11 + �11 = �, �22 + �22 = ��.
As above, we introduce dimensionless coordinates and the layer thickness and use the notation

From Eq. (4.1), we obtain

(4.2)

To fix our ideas, we shall assume that � < 1 and put �2 = 1/�2. From Eq. (4.2), we then obtain

This equation is identical to (2.9). Together with the condition z|� = 0, we obtain the problem of determining z, which
is identical to that considered in the preceding section. However, we note that the velocity field in this case is quite
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different from that considered above: the streamlines and the level lines are not orthogonal and, to determine v, we
have the equation of continuity (2.8) and the relation

(4.3)

which differs from (2.10).

5. The general case of anisotropy

If the principal directions of anisotropy in the properties of a material and of the matrices A1 and A2 coincide, the
preceding results can be generalized in an obvious way: to determine the pressure, we obtain

whence

The velocity field is determined from relations (2.8) and (4.3).
Note the degenerate version � = � when the problem of determining the magnitude of z is transformed into the

well-investigated case: |grad z|2 = g−2, z|� = 0.

Remark. Everything what has been described above refers to the case of a fixed domain. Meanwhile, the problem
of spreading, that is, the problem of determining the shape of the domain which the layer occupies after a specified
compression (the initial shape is known), is of considerable interest, particularly in the case of anisotropic friction.
There are serious mathematical difficulties associated with the formulation of this problem, and its solution is awaited.
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